Microscopic Chain Motion in Polymer Nanocomposites with Dynamically Asymmetric Interphases
نویسندگان
چکیده
Dynamics of the interphase region between matrix and bound polymers on nanoparticles is important to understand the macroscopic rheological properties of nanocomposites. Here, we present neutron scattering investigations on nanocomposites with dynamically asymmetric interphases formed by a high-glass transition temperature polymer, poly(methyl methacrylate), adsorbed on nanoparticles and a low-glass transition temperature miscible matrix, poly(ethylene oxide). By taking advantage of selective isotope labeling of the chains, we studied the role of interfacial polymer on segmental and collective dynamics of the matrix chains from subnanoseconds to 100 nanoseconds. Our results show that the Rouse relaxation remains unchanged in a weakly attractive composite system while the dynamics significantly slows down in a strongly attractive composite. More importantly, the chains disentangle with a remarkable increase of the reptation tube size when the bound polymer is vitreous. The glassy and rubbery states of the bound polymer as temperature changes underpin the macroscopic stiffening of nanocomposites.
منابع مشابه
Recent Applications of Ionic Liquids in the Sol-Gel Process for Polymer–Silica Nanocomposites with Ionic Interfaces
Understanding the organic–inorganic interphases of hybrid materials allows structure and properties control for obtaining new advanced materials. Lately, the use of ionic liquids (ILs) and poly(ionic liquids) (PILs) allowed structure control from the first sol-gel reaction steps due to their anisotropy and multiple bonding capacity. They also act as multifunctional compatibilizing agents that a...
متن کاملInterphase effects in dental nanocomposites investigated by small-angle neutron scattering.
Small-angle and ultrasmall-angle neutron scattering (SANS and USANS) were used to characterize silica nanoparticle dispersion morphologies and the interphase in thermoset dimethacrylate polymer nanocomposites. Silica nanoparticle fillers were silanized with varying mass ratios of 3-methacryloxypropyltrimethoxysilane (MPTMS), a silane that interacts with the matrix through covalent and H-bonding...
متن کاملCharacterization of Dielectric Nanocomposites with Electrostatic Force Microscopy
Nanocomposites physical properties unexplainable by general mixture laws are usually supposed to be related to interphases, highly present at the nanoscale. The intrinsic dielectric constant of the interphase and its volume need to be considered in the prediction of the effective permittivity of nanodielectrics, for example. The electrostatic force microscope (EFM) constitutes a promising techn...
متن کاملMolecular dynamics simulations of polymer transport in nanocomposites.
Molecular dynamics simulations on the Kremer-Grest bead-spring model of polymer melts are used to study the effect of spherical nanoparticles on chain diffusion. We find that chain diffusivity is enhanced relative to its bulk value when polymer-particle interactions are repulsive and is reduced when polymer-particle interactions are strongly attractive. In both cases chain diffusivity assumes i...
متن کاملSolid-State (2) H NMR Determination of Poly(aniline) Conformation Within a MoO(3) Nanocomposite.
The focus of much recent research activity and interest, including our own, have been the synthesis, structure, and properties of conductive polymer/transition metal oxide nanocomposites. These hybrid materials comprise conductive organic polymers, such as poly(aniline) (PANI), interleaved between the layers of an inorganic oxide lattice, and are intriguing candidates for advanced material appl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 6 شماره
صفحات -
تاریخ انتشار 2016